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Overview

▶ Agent-based models (ABMs) rely on synthetic populations.
▶ Existing methods for generating populations leverage real-world

datasets of agent-level attributes.
▶ Instead we treat synthetic population generation as scenario

generation:
“Under the assumption that the model is correct,
what might the population in this system need to

look like in order to realise a user-specified scenario?”

Limitations of Existing Approaches

▶ Rely on individual-level datasets - often unavailable!
▶ Perform population synthesis upfront - population is not informed

by the behaviour of the ABM!

Our Approach

▶ Sample ABM structural parameters ω and population
parameters θ from a proposal distribution q(·):

(ω, θ) ∼ q(·).
▶ Sample agent attributes AN from an attribute distribution with

parameter θ:
AN ∼ f (· | θ).

▶ Forward-simulate ABM with AN and ω to generate output x:
x ∼ p(· | ω,AN).
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Challenge: Choosing a Proposal Distribution

▶ Main challenge lies in specifying the proposal distribution q.
▶ Idea: Allow the modeller to define a loss function ℓ : X → [0,∞)

describing proximity of an outcome to a desired scenario.
▶ We can lift this loss to a loss over structural and population

parameters:
L(ω, θ) = Ep(x|ω,θ)[hϵ(ℓ(x))],

where hϵ is method-dependent function parameterised by ϵ > 0.

Method 1: Threshold-based Sampling (TBS)

▶ Let hϵ be a probability kernel function, before letting
q(ω, θ) ∝ L(ω, θ)

▶ Example: Setting
hϵ(·) ∝ I(· ≤ ϵ)

corresponds to
q(ω, θ) ∝ P({ℓ(x) ≤ ϵ | x ∼ p(· | ω, θ)}).

That is, the pair (ω, θ) is down-weighted if the probability it
produces scenarios within an ϵ-ball of a desired scenario is low.

▶ Smoother choices include hϵ ∝ exp(− · /ϵ).
▶ We may sample from q in a Monte Carlo fashion.

▷ In our experiments we use sequential Monte Carlo sampling
(TBS-SMC).

▶ Hyperparameter ϵ controls the variance of q.

Method 2: Variational Optimisation (VO)

▶ Set hϵ to the identity function and consider a parameterised family
of proposal distributions Q = {q(· | ϕ) | ϕ ∈ Φ}.
▷ In our experiments we parameterise with a normalising flow

(VO-NF).
▶ Solve the resulting variational optimisation problem:

q = argmin
ϕ∈Φ

{
Eω,θ∼q(ω,θ|ϕ) [L(ω, θ)]− γ ·H(q(· | ϕ))

}
,

where H is the differential entropy and γ ≥ 0 is a hyperparameter.
▶ Setting γ = 0 causes q to collapse into a degenerate distribution

whose mass is concentrated on pairs (ω, θ) that minimise L.
▶ Larger γ encourages greater diversity.
▶ We may estimate q through stochastic gradient descent.

Experiments: Axtell’s Model of Firms

▶ Model agents moving between firms across time t ∈ [0, 1].
▶ Agent n works with some effort level etn ∈ [0, 1] at time t.
▶ Each agent reevaluates their situation at an agent-specific rate ρn.
▶ Each agent also maintains an agent-specific parameter vn ∈ [0, 1]

describing their preference for leisure vs income.
▶ When reevaluating, agents decide between

▷ adjusting their effort level,
▷ moving to an existing firm,
▷ or starting a new firm.

Experiments: Designing a Loss

▶ Question: Can an initially hardworking population become lazy
over time?

▶ We choose the following loss function that measures the difference
between the average effort of agents at the beginning and end of
the time horizon:

ℓ(x) =
1

N

N∑
n=1

(
e1n − e0n + 1

)
▶ Choose the following attribute distribution:

f (e0n, νn, ρn | θ) = Beta(e0n | εa, εb)·Beta(νn | ga, gb)·Gamma(ρn | ϱa, ϱb)

Results

▶ Both methods easily outperform a uniform proposal.
▶ Also, both methods provide insight into the properties of an ideal

population:
▷ Agents must strongly prefer leisure over income
▷ and must frequently reevaluate their position!
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