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Overview

» Agent-based models (ABMs) rely on synthetic populations.
» Existing methods for generating populations leverage real-world
datasets of agent-level attributes.
» Instead we treat synthetic population generation as scenario
generation:
“Under the assumption that the model is correct,
what might the population in this system need to
look like in order to realise a user-specified scenario?”

Limitations of Existing Approaches

» Rely on individual-level datasets - often unavailable!

» Perform population synthesis upfront - population is not informed
by the behaviour of the ABM!

Our Approach

» Sample ABM structural parameters w and population
parameters 0 from a proposal distribution ¢(-):
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» Sample agent attributes Ay from an attribute distribution with
parameter 6.
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» Forward-simulate ABM with Ay and w to generate output x:
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Proposal distribution
q(-)

Population parameters 6

Structural
parameters w

Attribute distribution
f(10)

Agents’ attributes Ay

ABM
p(' | W, AN)

Simulated scenario
£z

Challenge: Choosing a Proposal Distribution

» Main challenge lies in specifying the proposal distribution g.

» Idea: Allow the modeller to define a loss function 7/ : X — |0, co)
describing proximity of an outcome to a desired scenario.

» We can lift this loss to a loss over structural and population
parameters:
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where h. Is method-dependent function parameterised by ¢ > 0.

Method 1: Threshold-based Sampling (TBS)

» Let A, be a probability kernel function, before letting
q(w,0) x L(w,H)
» Example: Setting
he() o< I(- <€)
corresponds to
g(w, 0) < P({l(z) < €| a~p(-|w,0)}).

That is, the pair (w, ) is down-weighted if the probability it
produces scenarios within an e-ball of a desired scenario is low.
» Smoother choices include h. oc exp(— - /e).
» We may sample from ¢ in a Monte Carlo fashion.
> In our experiments we use sequential Monte Carlo sampling
(TBS-SMC).
» Hyperparameter ¢ controls the variance of q.

Method 2: Variational Optimisation (VO)

» Set h, to the identity function and consider a parameterised family
of proposal distributions Q@ = {q(- | ¢) | ¢ € D}
> In our experiments we parameterise with a normalising flow
(VO-NF).
» Solve the resulting variational optimisation problem:
o= augmin { Boomuay [C0.0)) =7+ Hla(- 6) |
where H is the differential entropy and v > 0 Is a hyperparameter.
» Setting v = 0 causes ¢ to collapse into a degenerate distribution
whose mass is concentrated on pairs (w, 8) that minimise L.
» Larger v encourages greater diversity.
» We may estimate ¢ through stochastic gradient descent.
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Experiments: Axtell’s Model of Firms

» Model agents moving between firms across time ¢ € |0, 1].
» Agent n works with some effort level e € [0, 1] at time ¢.
» Each agent reevaluates their situation at an agent-specific rate p,,.
» Each agent also maintains an agent-specific parameter v,, € |0, 1]
describing their preference for leisure vs income.
» When reevaluating, agents decide between
> adjusting their effort level,
> moving to an existing firm,
> or starting a new firm.

Experiments: Designing a Loss

» Question: Can an initially hardworking population become lazy
over time?

» We choose the following loss function that measures the difference
between the average effort of agents at the beginning and end of

the time horizon:

1 N

{(x) :NZ(ei—egnLl)

n=1

» Choose the following attribute distribution:
f(e) v, pn | 0) = Beta(e) | €4, €1)-Beta(v,, | g, g»)-Gammal(p, | 04, 0b)

n

» Both methods easily outperform a uniform proposal.

» Also, both methods provide insight into the properties of an ideal
population:
> Agents must strongly prefer leisure over income
> and must frequently reevaluate their position!
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