Population synthesis as scenario generation for simulation-based planning under uncertainty

Joel Dyer, Arnau Quera-Bofarull, Nicholas Bishop, J. Doyne Farmer, Anisoara Calinescu, Michael Wooldridge University of Oxford

{joel.dyer, arnau.quera-bofarull, nicholas.bishop}@cs.ox.ac.uk

Overview

- ► Agent-based models (ABMs) rely on synthetic populations.
- Existing methods for generating populations leverage real-world datasets of agent-level attributes.
- ► Instead we treat synthetic population generation as scenario generation:

"Under the assumption that the model is correct, what might the population in this system need to look like in order to realise a user-specified scenario?"

Limitations of Existing Approaches

- ► Rely on individual-level datasets often unavailable!
- ► Perform population synthesis upfront population is not informed by the behaviour of the ABM!

Our Approach

► Sample ABM structural parameters ω and population parameters θ from a proposal distribution $q(\cdot)$:

$$(\omega,\theta) \sim q(\cdot)$$
.

Sample agent attributes A_N from an **attribute distribution** with parameter θ :

$$\mathcal{A}_N \sim f(\cdot \mid \theta).$$

▶ Forward-simulate ABM with A_N and ω to generate output \mathbf{x} :

$$\mathbf{x} \sim p(\cdot \mid \omega, \mathcal{A}_N).$$

Challenge: Choosing a Proposal Distribution

- \blacktriangleright Main challenge lies in specifying the proposal distribution q.
- ▶ Idea: Allow the modeller to define a loss function $\ell: \mathcal{X} \to [0, \infty)$ describing proximity of an outcome to a desired scenario.
- ► We can lift this loss to a loss over structural and population parameters:

$$\mathcal{L}(\omega, \theta) = \mathbb{E}_{p(x|\omega,\theta)}[h_{\epsilon}(\ell(x))],$$

where h_{ϵ} is method-dependent function parameterised by $\epsilon > 0$.

Method 1: Threshold-based Sampling (TBS)

Let h_{ϵ} be a probability kernel function, before letting

$$q(\omega, \theta) \propto \mathcal{L}(\omega, \theta)$$

Example: Setting

$$h_{\epsilon}(\cdot) \propto \mathbb{I}(\cdot \leq \epsilon)$$

corresponds to

$$q(\omega, \theta) \propto \mathbb{P}(\{\ell(x) \leq \epsilon \mid x \sim p(\cdot \mid \omega, \theta)\}).$$

That is, the pair (ω, θ) is down-weighted if the probability it produces scenarios within an ϵ -ball of a desired scenario is low.

- ▶ Smoother choices include $h_{\epsilon} \propto \exp(-\cdot/\epsilon)$.
- ► We may sample from *q* in a Monte Carlo fashion.
 - ▷ In our experiments we use sequential Monte Carlo sampling (TBS-SMC).
- \blacktriangleright Hyperparameter ϵ controls the variance of q.

Method 2: Variational Optimisation (VO)

- Set h_{ϵ} to the identity function and consider a **parameterised family** of proposal distributions $\mathcal{Q} = \{q(\cdot \mid \phi) \mid \phi \in \Phi\}.$
 - In our experiments we parameterise with a normalising flow (VO-NF).
- ► Solve the resulting variational optimisation problem:

$$q = \arg\min_{\phi \in \Phi} \left\{ \mathbb{E}_{\omega, \theta \sim q(\omega, \theta | \phi)} \left[\mathcal{L}(\omega, \theta) \right] - \gamma \cdot \mathbb{H}(q(\cdot | \phi)) \right\},$$

where \mathbb{H} is the differential entropy and $\gamma \geq 0$ is a hyperparameter.

- Setting $\gamma = 0$ causes q to **collapse** into a degenerate distribution whose mass is concentrated on pairs (ω, θ) that minimise \mathcal{L} .
- \blacktriangleright Larger γ encourages greater **diversity**.
- ► We may estimate *q* through stochastic gradient descent.

Experiments: Axtell's Model of Firms

- ▶ Model agents moving between firms across time $t \in [0, 1]$.
- ▶ Agent n works with some effort level $e_n^t \in [0, 1]$ at time t.
- ► Each agent reevaluates their situation at an agent-specific rate ρ_n .
- ► Each agent also maintains an agent-specific parameter $v_n \in [0, 1]$ describing their preference for leisure vs income.
- ► When reevaluating, agents decide between
 - adjusting their effort level,
 - moving to an existing firm,
 - > or starting a new firm.

Experiments: Designing a Loss

- ► Question: Can an initially hardworking population become lazy over time?
- ➤ We choose the following loss function that measures the difference between the average effort of agents at the beginning and end of the time horizon:

$$\ell(x) = \frac{1}{N} \sum_{n=1}^{N} \left(e_n^1 - e_n^0 + 1 \right)$$

Choose the following attribute distribution:

$$f(e_n^0, \nu_n, \rho_n \mid \theta) = \mathsf{Beta}(e_n^0 \mid \varepsilon_a, \varepsilon_b) \cdot \mathsf{Beta}(\nu_n \mid g_a, g_b) \cdot \mathsf{Gamma}(\rho_n \mid \varrho_a, \varrho_b)$$

Results

- Both methods easily outperform a uniform proposal.
- ► Also, both methods provide insight into the properties of an ideal population:
 - Agents must strongly prefer leisure over income
 - and must frequently reevaluate their position!

